Rationality constructions for cubic hypersurfaces ICERM workshop 'Birational Geometry and Arithmetic'

Brendan Hassett

Brown University

May 14, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our focus is smooth cubic fourfolds $X \subset \mathbb{P}^5$:

- 1. Review recent progress on rationality
- 2. Place these results in the larger conjectural context
- 3. Propose next steps for future work

The more recent results I will present are joint with Addington, Tschinkel and Várilly-Alvarado, along with recent work of Kuan-Wen Lai.

Classical rational parametrizations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Cubic fourfolds containing planes

Consider a cubic fourfolds containing two disjoint planes

$$P_1, P_2 \subset X, \quad P_i \simeq \mathbb{P}^2.$$

The 'third-point' construction

$$\begin{array}{cccc} \rho: P_1 \times P_2 & \stackrel{\sim}{\dashrightarrow} & X \\ (p_1, p_2) & \mapsto & x \end{array}$$

is birational, where the line

$$\ell(p_1, p_2) \cap X = \{p_1, p_2, x\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Writing

$$P_1 = \{u = v = w = 0\}$$
 $P_2 = \{x = y = z = 0\}$

then we have

$$X = \{F_{1,2}(u, v, w; x, y, z) + F_{2,1}(u, v, w; x, y, z) = 0\},\$$

forms of bidegrees (1,2) and (2,1). The indeterminacy of ρ is the locus

$$S = \{F_{1,2} = F_{2,1} = 0\} \subset P_1 \times P_2 \subset \mathbb{P}^8,$$

a K3 surface parametrizing lines in X meeting P_1 and P_2 . These are blown down by ρ^{-1} .

Cubic fourfolds containing quartic scrolls

This example is due to Morin-Fano (1940) and Beauville-Donagi (1985).

A quartic scroll is a smooth surface

$$T_4 \simeq \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^5$$

embedded via forms of bidegree (1, 2). The linear system of quadrics cutting out T_4 collapses all its secant lines, inducing a map

$$\mathbb{P}^5 \dashrightarrow Q \subset \mathbb{P}^5$$

onto a hypersurface of degree two. Any cubic fourfold

 $X \supset T_4$

is mapped birationally to Q and thus is rational.

What is the parametrizing map

$$\rho: Q \xrightarrow{\sim} X?$$

Fix a point on a degree 14 K3 surface

$$s\in S\subset \mathbb{P}^8$$

and take a double (tangential) projection of $\operatorname{Bl}_s(S) \subset \mathbb{P}^5$. The resulting surface is contained in a quadric hypersurface Q and ρ arises from the cubics containing this surface. Again, we have a K3 surface.

Cubic fourfolds with double point

A cubic fourfold with double point

$$x_0 = [1, 0, 0, 0, 0, 0] \in X \subset \mathbb{P}^5$$

is always rational via projection from x_0

$$X \xrightarrow{\sim} \mathbb{P}^4.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The inverse map ρ blows up a K3 surface

$$S = \{F_2(v, w, x, y, z) = F_3(v, w, x, y, z) = 0\}$$

where $X = \{uF_2 + F_3 = 0\}.$

Classification and conjectures

Moduli space

Let C denote the moduli space of cubic fourfolds, smooth (as a stack) of dimension 20. The middle Hodge numbers are

Voisin has shown that the period map for cubic fourfolds is an open immersion into its period domain, a type IV Hermitian symmetric domain – analogous to K3 surfaces. When X is a very general cubic fourfold we have

$$H^{2,2}(X) \cap H^4(X,\mathbb{Z}) = \mathbb{Z}h^2$$

where h is the hyperplane class. Cubic fourfolds with

$$H^{2,2}(X) \cap H^4(X,\mathbb{Z}) \supsetneq \mathbb{Z}h^2$$

are *special*.

Speciality Conjecture

Conjecture (Harris-Mazur ??)

All rational cubic fourfolds are special.

The special cubic fourfolds form a countably infinite union of irreducible divisors

$$\cup_{d} \mathcal{C}_{d} \subset \mathcal{C}$$

where $d \equiv 0, 2 \pmod{6}$ and $d \ge 8$, e.g.,

- d = 8: $X \supset P$ a plane;
- d = 14: $X \supset T_4$ a quartic scroll.

While no cubic fourfolds are *known* to be irrational most people doubt that *all* special cubic fourfolds are rational. I would personally be very surprised if the examples

•
$$d = 12$$
: $X \supset T_3 \simeq \mathbb{F}_1$ a cubic scroll;

•
$$d = 20$$
: $X \supset V \simeq \mathbb{P}^2$ a Veronese surface;

were generally rational. Hence we narrow the search.

All known rational parametrization $\rho : \mathbb{P}^4 \dashrightarrow X$ blow up a K3 surface.

Cubic fourfolds and K3 surfaces

On blowing up a smooth surface S in a fourfold Y, we have

$$H^4(\mathrm{Bl}_{\mathcal{S}}(Y),\mathbb{Z})=H^4(Y,\mathbb{Z})\oplus H^2(\mathcal{S},\mathbb{Z})(-1)$$

where the (-1) reflects Tate twist. This motivates the following: Definition

A polarized K3 surface (S, f) is associated with a cubic fourfold X if we have a saturated embedding of the primitive Hodge structure

$$H^2(S,\mathbb{Z})_{\circ}(-1) \hookrightarrow H^4(X,\mathbb{Z}).$$

It follows that X is special.

Some basic properties:

- a general cubic fourfold [X] ∈ C_d admits an associated K3 surface unless 4|d,9|d, or p|d for some odd prime p ≡ 2 (mod 3);
- all known rational cubic fourfolds admit associated K3 surfaces;
- Kuznetsov proposed an alternate formulations via derived categories of coherent sheaves – Addington and Thomas have shown this is equivalent to the Hodge characterization over dense open subsets of each C_d;
- distinct polarized K3 surfaces (S₁, f₁) and (S₂, f₂) may have isomorphic primitive cohomologies – this characterizes derived equivalence among rank one K3 surfaces.

A curiosity

Thus associated K3 surfaces are far from unique; the monodromy representation over C_d when 3|d precludes a well-defined choice! Is there a diagram

where X is a cubic fourfold, β_i blows up a K3 surface S_i , but S_1 and S_2 are distinct? We would expect the K3 surfaces to be derived equivalent if the only other cohomology is of Hodge-Tate type.

Lai and I have found such diagrams for more general Fano fourfolds.

A stronger conjecture

Conjecture (Kuznetsov* Conjecture)

A cubic fourfold is rational if and only if it admits an associated K3 surface.

Kuznetsov originally expressed this in derived category language. Addington-Thomas – taken off-the-shelf – applies to dense open subsets of the appropriate C_d . The recent theorem by Kontsevich and Tschinkel on specialization of rationality implies the statement above.

Question

Is the derived category condition in Kuznetsov's conjecture stable under smooth specialization?

A proof was recently announced by Arend Bayer.

Cubic fourfolds and twisted K3 surfaces

Definition

A polarized K3 surface (S, f) is twisted associated with a cubic fourfold X if we have inclusions of Hodge structures

$$H^2(S,\mathbb{Z})_{\circ}(-1) \stackrel{\iota}{\leftarrow} \Lambda \stackrel{j}{\hookrightarrow} H^4(X,\mathbb{Z})$$

where j is saturated and ι has cyclic cokernel. A is characterized as the kernel of a homomorphism

$$\alpha: H^2(S,\mathbb{Z})_{\circ} \to \mathbb{Q}/\mathbb{Z},$$

the twisting data when $\operatorname{Pic}(S) = \mathbb{Z}f$. Huybrechts has shown a general $[X] \in C_d$ admits a twisted associated K3 if and only if

$$d/2 = \prod_i p_i^{n_i}$$

where n_i is even when $p_i \equiv 2 \pmod{3}$.

Examples motivated by the classification

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Tabulation of discriminants

d	8	12	14	18	20	24	26	30	32	36	38	42
K3	—	_	+	_	_	—	+	_	_	—	+	+
twisted K3	+	_	+	+	—	+	+	—	+	—	+	+
order(lpha)	2		1	3		2	1		4		1	1
d	44	48	50	54	56	60	62	66	68	72	74	78
<u>d</u> K3	44	48	50 —	54 _	56 _	60 —	62 +	66 _	68 _	72	74 +	78 +
	44 - -	48 	50 - +	54 - +	56 - +	60 — —	62 + +	66 	68 - -	72 - +	74 + +	78 + +

<□ > < @ > < E > < E > E のQ @

Twisted structures and rationality

The first result goes back to the 1990's:

Theorem

Each $X \in C_8$, containing a plane P, yields a twisted K3 surface (S, f, α) of degree two and order two. X is rational when α vanishes in Br(S).

Idea: projecting from P gives a quadric surface bundle $\operatorname{Bl}_P(X) \to \mathbb{P}^2$ which is rational when the Brauer class vanishes. The second is more recent

Theorem (AHTV 2016)

 $X \in C_{18}$ yields a twisted K3 surface (S, f, α) of degree two and order three. X is rational when α vanishes in Br(S).

Idea: Fiber in sextic del Pezzo surfaces.

Challenge: Give more examples along these lines, especially for higher torsion orders.

The case of d = 50 looks quite intriguing. How can we make sense of five torsion?

The fibrations in surfaces we use do not obviously generalize:

Does there exist a class of geometrically rational surfaces Σ/K (say, $K = \mathbb{C}(\mathbb{P}^2)$) whose rationality over K is controlled by an element $\alpha \in Br(L)$ with order prime to 6, where L/K is a finite extension depending on Σ ?

Associated K3 surfaces and rationality

Here are new and surprising results:

Theorem (Russo-Staglianò 2017)

 $X \in C_{26}$, containing a septic scroll with three transverse double points, is rational.

 $X \in C_{38}$, containing a degree-ten surface isomorphic to \mathbb{P}^2 blown up in ten points, is rational.

These are the first new divisorial examples predicted by Kuznetsov, which looks much more plausible than a year ago. The construction uses families of conics 5-secant to a prescribed surface; the family *B* happens to be rational. Each of these meets a cubic fourfold in six points, so the residual point of intersection gives $B \xrightarrow{\sim} X$.

Parametrization questions

Challenge: Describe the parametrization $\rho : \mathbb{P}^4 \to X$ in the Russo-Staglianò examples. Does it blow up an associated K3 surface? Give explicit linear series on X inducing ρ^{-1} .

Question

Can the rationality construction be extended to d = 42? (Lai)

Are there rationality constructions associated with degree e rational curves (3e - 1)-secant to a suitable surface? (Yes for e = 1, 2!)