Rationality constructions for cubic hypersurfaces

ICERM workshop 'Birational Geometry and Arithmetic'

Brendan Hassett

Brown University

May 14, 2018

Goals for this talk

Our focus is smooth cubic fourfolds $X \subset \mathbb{P}^{5}$:

1. Review recent progress on rationality
2. Place these results in the larger conjectural context
3. Propose next steps for future work

The more recent results I will present are joint with Addington, Tschinkel and Várilly-Alvarado, along with recent work of Kuan-Wen Lai.

Classical rational parametrizations

Cubic fourfolds containing planes

Consider a cubic fourfolds containing two disjoint planes

$$
P_{1}, P_{2} \subset X, \quad P_{i} \simeq \mathbb{P}^{2}
$$

The 'third-point' construction

$$
\begin{array}{ccc}
\rho: P_{1} \times P_{2} & \xrightarrow[\sim]{\sim} & X \\
\left(p_{1}, p_{2}\right) & \mapsto & x
\end{array}
$$

is birational, where the line

$$
\ell\left(p_{1}, p_{2}\right) \cap X=\left\{p_{1}, p_{2}, x\right\}
$$

Writing

$$
P_{1}=\{u=v=w=0\} \quad P_{2}=\{x=y=z=0\}
$$

then we have

$$
X=\left\{F_{1,2}(u, v, w ; x, y, z)+F_{2,1}(u, v, w ; x, y, z)=0\right\}
$$

forms of bidegrees $(1,2)$ and $(2,1)$. The indeterminacy of ρ is the locus

$$
S=\left\{F_{1,2}=F_{2,1}=0\right\} \subset P_{1} \times P_{2} \subset \mathbb{P}^{8}
$$

a K3 surface parametrizing lines in X meeting P_{1} and P_{2}. These are blown down by ρ^{-1}.

Cubic fourfolds containing quartic scrolls

This example is due to Morin-Fano (1940) and Beauville-Donagi (1985).

A quartic scroll is a smooth surface

$$
T_{4} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{5}
$$

embedded via forms of bidegree $(1,2)$. The linear system of quadrics cutting out T_{4} collapses all its secant lines, inducing a map

$$
\mathbb{P}^{5} \rightarrow Q \subset \mathbb{P}^{5}
$$

onto a hypersurface of degree two. Any cubic fourfold

$$
X \supset T_{4}
$$

is mapped birationally to Q and thus is rational.

What is the parametrizing map

$$
\rho: Q \xrightarrow{\sim} X ?
$$

Fix a point on a degree 14 K3 surface

$$
s \in S \subset \mathbb{P}^{8}
$$

and take a double (tangential) projection of $\mathrm{Bl}_{s}(S) \subset \mathbb{P}^{5}$. The resulting surface is contained in a quadric hypersurface Q and ρ arises from the cubics containing this surface.
Again, we have a K3 surface.

Cubic fourfolds with double point

A cubic fourfold with double point

$$
x_{0}=[1,0,0,0,0,0] \in X \subset \mathbb{P}^{5}
$$

is always rational via projection from x_{0}

$$
X \xrightarrow[\rightarrow]{\sim} \mathbb{P}^{4}
$$

The inverse map ρ blows up a K3 surface

$$
S=\left\{F_{2}(v, w, x, y, z)=F_{3}(v, w, x, y, z)=0\right\}
$$

where $X=\left\{u F_{2}+F_{3}=0\right\}$.

Classification and conjectures

Moduli space

Let \mathcal{C} denote the moduli space of cubic fourfolds, smooth (as a stack) of dimension 20. The middle Hodge numbers are

$$
\begin{array}{lllll}
0 & 1 & 21 & 1 & 0 .
\end{array}
$$

Voisin has shown that the period map for cubic fourfolds is an open immersion into its period domain, a type IV Hermitian symmetric domain - analogous to K3 surfaces. When X is a very general cubic fourfold we have

$$
H^{2,2}(X) \cap H^{4}(X, \mathbb{Z})=\mathbb{Z} h^{2}
$$

where h is the hyperplane class. Cubic fourfolds with

$$
H^{2,2}(X) \cap H^{4}(X, \mathbb{Z}) \supsetneq \mathbb{Z} h^{2}
$$

are special.

Speciality Conjecture

Conjecture (Harris-Mazur ??)
All rational cubic fourfolds are special.
The special cubic fourfolds form a countably infinite union of irreducible divisors

$$
\cup_{d} \mathcal{C}_{d} \subset \mathcal{C}
$$

where $d \equiv 0,2(\bmod 6)$ and $d \geq 8$, e.g.,

- $d=8: X \supset P$ a plane;
- $d=$ 14: $X \supset T_{4}$ a quartic scroll.

While no cubic fourfolds are known to be irrational most people doubt that all special cubic fourfolds are rational. I would personally be very surprised if the examples

- $d=12: X \supset T_{3} \simeq \mathbb{F}_{1}$ a cubic scroll;
- $d=20: X \supset V \simeq \mathbb{P}^{2}$ a Veronese surface; were generally rational. Hence we narrow the search.

All known rational parametrization $\rho: \mathbb{P}^{4} \rightarrow X$ blow up a K 3 surface.

Cubic fourfolds and K3 surfaces

On blowing up a smooth surface S in a fourfold Y, we have

$$
H^{4}\left(\operatorname{Bl}_{S}(Y), \mathbb{Z}\right)=H^{4}(Y, \mathbb{Z}) \oplus H^{2}(S, \mathbb{Z})(-1)
$$

where the (-1) reflects Tate twist. This motivates the following:

Definition

A polarized K3 surface (S, f) is associated with a cubic fourfold X if we have a saturated embedding of the primitive Hodge structure

$$
H^{2}(S, \mathbb{Z})_{\circ}(-1) \hookrightarrow H^{4}(X, \mathbb{Z})
$$

It follows that X is special.

Some basic properties:

- a general cubic fourfold $[X] \in \mathcal{C}_{d}$ admits an associated K 3 surface unless $4|d, 9| d$, or $p \mid d$ for some odd prime $p \equiv 2$ (mod 3);
- all known rational cubic fourfolds admit associated K3 surfaces;
- Kuznetsov proposed an alternate formulations via derived categories of coherent sheaves - Addington and Thomas have shown this is equivalent to the Hodge characterization over dense open subsets of each \mathcal{C}_{d};
- distinct polarized K3 surfaces $\left(S_{1}, f_{1}\right)$ and $\left(S_{2}, f_{2}\right)$ may have isomorphic primitive cohomologies - this characterizes derived equivalence among rank one K3 surfaces.

A curiosity

Thus associated K 3 surfaces are far from unique; the monodromy representation over \mathcal{C}_{d} when $3 \mid d$ precludes a well-defined choice! Is there a diagram

where X is a cubic fourfold, β_{i} blows up a K 3 surface S_{i}, but S_{1} and S_{2} are distinct? We would expect the K3 surfaces to be derived equivalent if the only other cohomology is of Hodge-Tate type.

Lai and I have found such diagrams for more general Fano fourfolds.

A stronger conjecture

Conjecture (Kuznetsov* Conjecture)

A cubic fourfold is rational if and only if it admits an associated K3 surface.
Kuznetsov originally expressed this in derived category language. Addington-Thomas - taken off-the-shelf - applies to dense open subsets of the appropriate \mathcal{C}_{d}. The recent theorem by Kontsevich and Tschinkel on specialization of rationality implies the statement above.

Question

Is the derived category condition in Kuznetsov's conjecture stable under smooth specialization?
A proof was recently announced by Arend Bayer.

Cubic fourfolds and twisted K3 surfaces

Definition

A polarized K3 surface (S, f) is twisted associated with a cubic fourfold X if we have inclusions of Hodge structures

$$
H^{2}(S, \mathbb{Z})_{\circ}(-1) \stackrel{\iota}{\hookleftarrow} \Lambda \stackrel{j}{\hookrightarrow} H^{4}(X, \mathbb{Z})
$$

where j is saturated and ι has cyclic cokernel.
Λ is characterized as the kernel of a homomorphism

$$
\alpha: H^{2}(S, \mathbb{Z})_{\circ} \rightarrow \mathbb{Q} / \mathbb{Z}
$$

the twisting data when $\operatorname{Pic}(S)=\mathbb{Z} f$. Huybrechts has shown a general $[X] \in \mathcal{C}_{d}$ admits a twisted associated K3 if and only if

$$
d / 2=\prod_{i} p_{i}^{n_{i}}
$$

where n_{i} is even when $p_{i} \equiv 2(\bmod 3)$.

Examples motivated by the classification

Tabulation of discriminants

d	$\mathbf{8}$	12	14	$\mathbf{1 8}$	20	24	$\mathbf{2 6}$	30	32	36	$\mathbf{3 8}$	42
K3	-	-	+	-	-	-	+	-	-	-	+	+
twisted K3	+	-	+	+	-	+	+	-	+	-	+	+
order (α)	2		1	3		2	1		4		1	1

d	44	48	50	54	56	60	62	66	68	72	74	78
K3	-	-	-	-	-	-	+	-	-	-	+	+
twisted K3	-	-	+	+	+	-	+	-	-	+	+	+
order (α)			5	3	2		1			2	1	1

Twisted structures and rationality

The first result goes back to the 1990's:
Theorem
Each $X \in \mathcal{C}_{8}$, containing a plane P, yields a twisted K3 surface (S, f, α) of degree two and order two. X is rational when α vanishes in $\operatorname{Br}(S)$.
Idea: projecting from P gives a quadric surface bundle $\operatorname{Bl}_{P}(X) \rightarrow \mathbb{P}^{2}$ which is rational when the Brauer class vanishes. The second is more recent

Theorem (AHTV 2016)
$X \in \mathcal{C}_{18}$ yields a twisted K3 surface (S, f, α) of degree two and order three. X is rational when α vanishes in $\operatorname{Br}(S)$. Idea: Fiber in sextic del Pezzo surfaces.

Twisting questions

Challenge: Give more examples along these lines, especially for higher torsion orders.
The case of $d=50$ looks quite intriguing. How can we make sense of five torsion?
The fibrations in surfaces we use do not obviously generalize:
Does there exist a class of geometrically rational surfaces $\Sigma / K\left(\right.$ say, $\left.K=\mathbb{C}\left(\mathbb{P}^{2}\right)\right)$ whose rationality over K is controlled by an element $\alpha \in \operatorname{Br}(L)$ with order prime to 6 , where L / K is a finite extension depending on Σ ?

Associated K3 surfaces and rationality

Here are new and surprising results:
Theorem (Russo-Staglianò 2017)
$X \in \mathcal{C}_{26}$, containing a septic scroll with three transverse double points, is rational.
$X \in \mathcal{C}_{38}$, containing a degree-ten surface isomorphic to \mathbb{P}^{2} blown up in ten points, is rational.
These are the first new divisorial examples predicted by Kuznetsov, which looks much more plausible than a year ago.
The construction uses families of conics 5 -secant to a prescribed surface; the family B happens to be rational. Each of these meets a cubic fourfold in six points, so the residual point of intersection gives $B \xrightarrow{\sim} X$.

Parametrization questions

Challenge: Describe the parametrization $\rho: \mathbb{P}^{4} \rightarrow X$ in the Russo-Staglianò examples.
Does it blow up an associated K3 surface?
Give explicit linear series on X inducing ρ^{-1}.
Question
Can the rationality construction be extended to $d=42$? (Lai)
Are there rationality constructions associated with degree e rational curves (3e-1)-secant to a suitable surface? (Yes for $e=1,2$!)

